455 research outputs found

    The Study of Job Satisfaction of Employment Guidance Teachers in Heilongjiang International University in China

    Get PDF
    In recent years, the employment guidance teachers in private colleges and universities in China have grown rapidly. Whether they can be attracted and retained, and whether stimulate their work vitality, job satisfaction is an important indicator. The study found that the overall job satisfaction of employment guidance teachers is low and their turnover intention is high. This article investigated the job satisfaction of employment guidance teachers in Heilongjiang International University (HIU), using a quantitative questionnaire. According to the survey results of 200 respondents, various influencing factors are found, and the factors affecting the job satisfaction of employment guidance teachers are determined. Multiple regression analysis was used in this study. The results show that work load, work salary, interpersonal relationship and position promotion have a significant impact on job satisfaction

    Evaluation of Battery Storage to Provide Virtual Transmission Service

    Full text link
    An immediate need in the transmission system is to find alternative solutions that improve system operation and defer the need for new transmission lines. This study comprehensively evaluates the performance and economic benefits of using battery energy storage systems (BESS) as virtual transmission (VT) to promote power transfer cross distant regions. Specifically, this work implements various day-ahead energy scheduling models to analyze the impact of VT on system operation cost, network congestion, model computational time, and market performance. The performance of VT is compared with three alternative network congestion mitigation methods, including building new high-voltage physical transmission lines, cost-driven battery energy storage systems, and network reconfiguration, as well as combinations of two of aforementioned methods. The benchmark day-ahead scheduling model is a traditional security-constrained unit commitment model without system upgrades or other network congestion mitigation. Numerical simulations conducted on the IEEE 24-bus system demonstrate that among all the examined schemes, VT is the only one comparable to physical transmission lines that can provide satisfying congestion relief and operation cost reduction without sacrificing computing time and load payment significantly

    Efficient Image Stitching through Mobile Offloading

    Get PDF
    AbstractImage stitching is the task of combining images with overlapping parts to one big image. It needs a sequence of complex computation steps, especially the execution on a mobile device can take long and consume a lot of energy. Mobile offloading may alleviate those problems as it aims at improving performance and saving energy when executing complex applications on mobile devices. In this paper we investigate to which extent mobile offloading may improve the performance and energy efficiency of image stitching on mobile devices. We demonstrate our approach by stitching two or four images, but the process can be easily extended to an arbitrary number of images.We study three methods to offload parts of the computation to a resourceful server and evaluate them using several metrics. For the first offloading strategy all contributing images are sent, processed and the combined image is returned. For the second strategy images are offloaded, but not all stitching steps are executed on the remote server, and a smaller XML file is returned to the mobile client. The XML file contains a homography information which is needed by the mobile device to perform the last stitching step, the combination of the images. For the third strategy the images are transformed into grey scale before being transmitted to the server and an XML file is returned. The considered metrics are the execution time, the size of data to be transmitted and the memory usage. We find that the first strategy achieves the lowest total execution time but it requires more data to be transmitted than both the other strategies

    Interlayer Interactions in Anisotropic Atomically-thin Rhenium Diselenide

    Full text link
    Recently, two-dimensional (2D) materials with strong in-plane anisotropic properties such as black phosphorus have demonstrated great potential for developing new devices that can take advantage of its reduced lattice symmetry with potential applications in electronics, optoelectronics and thermoelectrics. However, the selection of 2D material with strong in-plane anisotropy has so far been very limited and only sporadic studies have been devoted to transition metal dichalcogenides (TMDC) materials with reduced lattice symmetry, which is yet to convey the full picture of their optical and phonon properties, and the anisotropy in their interlayer interactions. Here, we study the anisotropic interlayer interactions in an important TMDC 2D material with reduced in-plane symmetry - atomically thin rhenium diselenide (ReSe2) - by investigating its ultralow frequency interlayer phonon vibration modes, the layer dependent optical bandgap, and the anisotropic photoluminescence (PL) spectra for the first time. The ultralow frequency interlayer Raman spectra combined with the first study of polarization-resolved high frequency Raman spectra in mono- and bi-layer ReSe2 allows deterministic identification of its layer number and crystal orientation. PL measurements show anisotropic optical emission intensity with bandgap increasing from 1.26 eV in the bulk to 1.32 eV in monolayer, consistent with the theoretical results based on first-principle calculations. The study of the layer-number dependence of the Raman modes and the PL spectra reveals the relatively weak van der Waals interaction and 2D quantum confinement in atomically-thin ReSe2.Comment: 17 pages, 5 figures, supplementary informatio
    corecore